42 research outputs found

    Vertical Optimizations of Convolutional Neural Networks for Embedded Systems

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen

    Dynamic ConvNets on Tiny Devices via Nested Sparsity

    Get PDF
    This work introduces a new training and compression pipeline to build nested sparse convolutional neural networks (ConvNets), a class of dynamic ConvNets suited for inference tasks deployed on resource-constrained devices at the edge of the Internet of Things. A nested sparse ConvNet consists of a single ConvNet architecture, containing N sparse subnetworks with nested weights subsets, like a Matryoshka doll, and can trade accuracy for latency at runtime, using the model sparsity as a dynamic knob. To attain high accuracy at training time, we propose a gradient masking technique that optimally routes the learning signals across the nested weight subsets. To minimize the storage footprint and efficiently process the obtained models at inference time, we introduce a new sparse matrix compression format with dedicated compute kernels that fruitfully exploit the characteristic of the nested weights subsets. Tested on image classification and object detection tasks on an off-the-shelf ARM-M7 microcontroller unit (MCU), nested sparse ConvNets outperform variable-latency solutions naively built assembling single sparse models trained as stand-alone instances, achieving 1) comparable accuracy; 2) remarkable storage savings; and 3) high performance. Moreover, when compared to state-of-the-art dynamic strategies, such as dynamic pruning and layer width scaling, nested sparse ConvNets turn out to be Pareto optimal in the accuracy versus latency space

    Next-generation HPC models for future Rotorcraft applications

    Get PDF
    Rotorcraft technologies pose great scientific and industrial challenges for numerical computing. As available computational resources approach the exascale, finer scales and therefore more accurate simulations of engineering test cases become accessible. However, shifting legacy workflows and optimizing parallel efficiency and scalability of existing software on new hardware is often demanding. This paper reports preliminary results in CFD and structural dynamics simulations using the T106A Low Pressure Turbine (LPT) blade geometry on Leonardo S.p.A.'s davinci-1 high-performance computing (HPC) facility. Time to solution and scalability are assessed for commercial packages Ansys Fluent, STAR-CCM+, and ABAQUS, and the open-source scientific computing framework PyFR. In direct numerical simulations of compressible fluid flow, normalized time to solution values obtained using PyFR are found to be up to 8 times smaller than those obtained using Fluent and STAR-CCM+. The findings extend to the incompressible case. All models offer weak and strong scaling in tests performed on up to 48 compute nodes, each with 4 Nvidia A100 GPUs. In linear elasticity simulations with ABAQUS, both the iterative solver and the direct solver provide speedup in preliminary scaling tests, with the iterative solver outperforming the direct solver in terms of time-to-solution and memory usage. The results provide a first indication of the potential of HPC architectures in scaling engineering applications towards certification by simulation, and the first step for the Company towards the use of cutting-edge HPC toolkits in the field of Rotorcraft technologies

    SARS-CoV-2 Gamma and Delta Variants of Concern Might Undermine Neutralizing Activity Generated in Response to BNT162b2 mRNA Vaccination

    Get PDF
    The Delta variant raised concern regarding its ability to evade SARS-CoV-2 vaccines. We evaluated a serum neutralizing response of 172 Italian healthcare workers, three months after complete Comirnaty (BNT162b2 mRNA, BioNTech-Pfizer) vaccination, testing their sera against viral isolates of Alpha, Gamma and Delta variants, including 36 subjects with a previous SARS-CoV-2 infection. We assessed whether IgG anti-spike TRIM levels and serum neutralizing activity by seroneutralization assay were associated. Concerning Gamma variant, a two-fold reduction in neutralizing titres compared to the Alpha variant was observed, while a four-fold reduction of Delta virus compared to Alpha was found. A gender difference was observed in neutralizing titres only for the Gamma variant. The serum samples of 36 previously infected SARS-CoV-2 individuals neutralized Alpha, Gamma and Delta variants, demonstrating respectively a nearly three-fold and a five-fold reduction in neutralizing titres compared to Alpha variant. IgG anti-spike TRIM levels were positively correlated with serum neutralizing titres against the three variants. The Comirnaty vaccine provides sustained neutralizing antibody activity towards the Alpha variant, but it is less effective against Gamma and even less against Delta variants

    COVID-19 in rheumatic diseases in Italy: first results from the Italian registry of the Italian Society for Rheumatology (CONTROL-19)

    Get PDF
    OBJECTIVES: Italy was one of the first countries significantly affected by the coronavirus disease 2019 (COVID-19) epidemic. The Italian Society for Rheumatology promptly launched a retrospective and anonymised data collection to monitor COVID-19 in patients with rheumatic and musculoskeletal diseases (RMDs), the CONTROL-19 surveillance database, which is part of the COVID-19 Global Rheumatology Alliance. METHODS: CONTROL-19 includes patients with RMDs and proven severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) updated until May 3rd 2020. In this analysis, only molecular diagnoses were included. The data collection covered demographic data, medical history (general and RMD-related), treatments and COVID-19 related features, treatments, and outcome. In this paper, we report the first descriptive data from the CONTROL-19 registry. RESULTS: The population of the first 232 patients (36% males) consisted mainly of elderly patients (mean age 62.2 years), who used corticosteroids (51.7%), and suffered from multi-morbidity (median comorbidities 2). Rheumatoid arthritis was the most frequent disease (34.1%), followed by spondyloarthritis (26.3%), connective tissue disease (21.1%) and vasculitis (11.2%). Most cases had an active disease (69.4%). Clinical presentation of COVID-19 was typical, with systemic symptoms (fever and asthenia) and respiratory symptoms. The overall outcome was severe, with high frequencies of hospitalisation (69.8%), respiratory support oxygen (55.7%), non-invasive ventilation (20.9%) or mechanical ventilation (7.5%), and 19% of deaths. Male patients typically manifested a worse prognosis. Immunomodulatory treatments were not significantly associated with an increased risk of intensive care unit admission/mechanical ventilation/death. CONCLUSIONS: Although the report mainly includes the most severe cases, its temporal and spatial trend supports the validity of the national surveillance system. More complete data are being acquired in order to both test the hypothesis that RMD patients may have a different outcome from that of the general population and determine the safety of immunomodulatory treatments

    Going Further With Winograd Convolutions: Tap-Wise Quantization for Efficient Inference on 4x4 Tile

    No full text
    Most of today's computer vision pipelines are built around deep neural networks, where convolution operations require most of the generally high compute effort. The Winograd convolution algorithm computes convolutions with fewer MACs compared to the standard algorithm, reducing the operation count by a factor of 2.25x for 3x3 convolutions when using the version with 2x2-sized tiles F2. Even though the gain is significant, the Winograd algorithm with larger tile sizes, i.e., F4, offers even more potential in improving throughput and energy efficiency, as it reduces the required MACs by 4x. Unfortunately, the Winograd algorithm with larger tile sizes introduces numerical issues that prevent its use on integer domain-specific accelerators and higher computational overhead to transform input and output data between spatial and Winograd domains. To unlock the full potential of Winograd F4, we propose a novel tap-wise quantization method that overcomes the numerical issues of using larger tiles, enabling integer-only inference. Moreover, we present custom hardware units that process the Winograd transformations in a power- and area-efficient way, and we show how to integrate such custom modules in an industrial-grade, programmable DSA. An extensive experimental evaluation on a large set of state-of-the-art computer vision benchmarks reveals that the tap-wise quantization algorithm makes the quantized Winograd F4 network almost as accurate as the FP32 baseline. The Winograd-enhanced DSA achieves up to 1.85x gain in energy efficiency and up to 1.83x end-to-end speed-up for state-of-the-art segmentation and detection networks

    Genetic characterization of Bacillus anthracis strains circulating in Italy from 1972 to 2018.

    No full text
    In Italy anthrax is an endemic disease, with a few outbreaks occurring almost every year. We surveyed 234 B. anthracis strains from animals (n = 196), humans (n = 3) and the environment (n = 35) isolated during Italian outbreaks in the years 1972-2018. Despite the considerable genetic homogeneity of B. anthracis, the strains were effectively differentiated using canonical single nucleotide polymorphisms (CanSNPs) assay and multiple-locus variable-number tandem repeat analysis (MLVA). The phylogenetic identity was determined through the characterization of 14 CanSNPs. In addition, a subsequent 31-loci MLVA assay was also used to further discriminate B. anthracis genotypes into subgroups. The analysis of 14 CanSNPs allowed for the identification of four main lineages: A.Br.011/009, A.Br.008/011 (respectively belonging to A.Br.008/009 sublineage, also known Trans-Eurasian or TEA group), A.Br.005/006 and B.Br.CNEVA. A.Br.011/009, the most common subgroup of lineage A, is the major genotype of B. anthracis in Italy. The MLVA analysis revealed the presence of 55 different genotypes in Italy. Most of the genotypes are genetically very similar, supporting the hypothesis that all strains evolved from a local common ancestral strain, except for two genotypes representing the branch A.Br.005/006 and B.Br.CNEVA. The genotyping analysis applied in this study remains a very valuable tool for studying the diversity, evolution, and molecular epidemiology of B. anthracis

    The power of weight and the weight of power in adolescence: a comparison between young and adult women

    No full text
    Obesity is an important emerging problem in adolescence because it causes psychological distress and social prejudice. Using Ugazio\u2019s theory, this study aims to test if the construct \u2018winner/loser\u2019 and its associated meanings are used and considered important among obese adolescents. The personal constructs of 68 participants (young and adult; obese and normal weight) were elicited through the repertory grid test and analysed using the log-linear model. The power dimension was the most used in the obese groups (young and adult) but it was considered the most relevant among adolescents rather than women, regardless of the weight variable. The results allow us to provide several suggestions on a clinical level and on a wider social perspective
    corecore